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Abstract: 
Chaotic time series have as main feature, the possibility of short time prediction of their future evolution. The 

time series of the natural systems are seldom generated by purely linear or nonlinear systems. They are usually the 
result of the evolution in time of nonlinear systems. Therefore, the time series will encapsulate both linear and 
nonlinear components. This hybrid character of such time series makes the prediction process very complex and not 
accurate using a single technique. Combining different techniques and models increases the chances of representing 
and modeling complex relationships between data and to improve the quality of time series prediction. The paper 
presents the results obtained in the case of the electricity spot price time series modeled using ARIMA technique for the 
linear part and a neural network for the nonlinear component. 
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1. INTRODUCTION 
 
 The literature referring to hybrid approaches in modeling, offers many examples of papers 
describing the use of ARIMA technique for modeling the linear part of the time series and neural 
networks for the nonlinear component. [7], [4] 

A model of a univariate time series tries to explain the evolution of a variable based on its 
previous values. Usually, it is considered that the variable is the result of a stochastic process, its 
values are evolving according to probabilistic laws. 
 Since in the time series analyzed by this paper elements indicating the presence of chaotic 
dynamics have been identified, we will apply the technique of phase space reconstruction. 
According to Takens's theorem, since each variable contains information about the dynamics of the 
whole system, one can reconstruct the phase space by using a univariate time series of the observed 
variable. Reconstructed phase space (also called embedding space) will be equivalent to the original 
topological space phase and, therefore, equivalent to the original attractor. The reconstructed phase 
space is parameterized by the embedding dimension m and the delay time . M dimensional vectors 
formed applying the equation 1 are describing an object topologically equivalent to the attractor of 
the original time series. 

  )*1(2 ,...,,,  miiiii yyyyY     (1) 

 
2. ARIMA MODELING TECHNIQUE 

 
The ARIMA modeling procedure analyzes univariate time series using Autoregressive 

Integrated Moving Average (ARIMA). The ARIMA model (also called Box Jenkins model) allows 
forecasting the future values of a time series as linear combinations between past values of the 
series and previous errors (called shocks or innovations). An ARIMA model also uses correlations 
between time series values. 

The process of finding the appropriate ARIMA model comprises two steps: 
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 Identifying the model – determines the model best fitting the time series behavior. If the 
time series is affected by the seasonal component, the model to be determined is called 
SARIMA (Seasonal ARIMA) and it’s represented as ARIMA (p, d, q) (P, D, Q)S, where d 
and D represents seasonal and non-seasonal ordinal differences, p and P are seasonal and 
non-seasonal orders of the autoregressive terms, and q and Q represents ordinal moving 
average terms. S signifies seasonal difference. Finding the model parameters is achieved by 
studying the plots of autocorrelation function (ACF) and the partial correlation (PACF). 

 Model estimation - performance evaluation to describe the behavior of the time series. If the 
performance is not satisfactory one will return to the previous step, modifying the structure 
of the model until it is appropriate to capture the dynamics of time-series. 

 
 The time series used for developing a model are assumed to be stationary. Stationarity is a 
mathematical concept introduced to simplify theoretically and practically the modeling of the 
stochastic processes. In practice, the chances that time series to be nonstationary are increasing with 
the number of the values contained by that time series. A time series is non-stationary if its 
properties do not change regardless of when it is observed. Trend and seasonal component causes 
the series to be nonstationary. Time series stationarizing is usually done through differentiation 
(repeated as many times as needed) and involves calculating differences between the elements of 
the time series. 
 The mathematical expression of the general ARIMA model is: 

ptptptptt eeyycy    ...... 1111   (2) 

The equation above corresponds to an ARIMA(p,d,q) model, where p is the order of the 
autoregression part (the number of previous values to be taken into account when calculating the 
current value) d the number of differences , and q is the order of the moving average part (specify 
how the deviation from the mean of previous values is taken into calculation of the current value). 

Obtaining an optimum And RIMA model implies to find its optimal order, the residuals 
resulting from the application of the model must be independent and identically distributed with 
zero mean (i.e. to be uncorrelated with each other ) white noise type. 
 The initial time series is considered to contain a linear autocorrelated component and a 
nonlinear component, such that we can decompose the original time series like in the equation 3: 

ttt NLy       (3) 

 After ARIMA modeling process is completed, the time series can be expressed as the sum of 
linear component and the residuals: 
 

t
m
tt eLy       (4) 

 The residuals will contain the nonlinear relationships that can’t be captured by the ARIMA 
model. 
 The nonlinear part of the time series will be modeled using a multilayer perceptron neural 
network. The values at the output of the network are given by: 
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where iji w,  are the network weights, p and q are the numbers of neurons on the input layer, 

hidden layer respectively, and g is the activation function of the hidden neurons (usually hyperbolic 
tangent). 
 The neural network determines the output values as a combination of the previous values, like 
the nonlinear regression model. 

  tptttt wyyyfy   ,,..., 21     (6) 

where w is the vector of all network parameters and f is the function determined by the neural 
network. 
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 The method further applied aims to combine the abilities and performances of the two 
methods in time series modeling. ARIMA is used for the prediction of the linear component of time 
series and the neural network for the residual modeling (i.e. the nonlinear part of the time series). 
Due to its universal approximator property, the multilayer perceptron is extensively used in time 
series modeling and prediction. In the majority of this type of problems, one hidden layer of 
neurons is sufficient. 
 

3. ELECTRICITY SPOT MARKET MODELING 
 
 In the spot market, or the day-ahead market, the participants are trading contracts to supply 
electricity for the next day. Electricity prices are set daily, for one-hour intervals and covers the 
whole 24 hours range of the next day. The deadline for collecting all purchase orders and sales 
information is stored in the form of aggregated supply and demand curves for each hour. The prices 
determined using this procedure are called steady spot prices or system prices. 
 The models for spot price are the foundations of decision making and strategic planning 
processes. The need of spot price prediction, even for short-time periods is obvious and very 
important for every player of the trading market. 
 Most models for spot price market are using at least two risk factors: short-term dynamics 
characterized by mean reversion and a very strong volatility and the second one represents the long-
term behavior of the price [6], [5], [2]. 
 The mean reversion is modeled by a Ornstein-Uhlenbeck process given by: 

 
  ttt dWdtaSdS        (7) 

where Sr  is the spot price, Wt is a standard Brownian motion,  is the process volatility and  is the 
speed of the process reverts to the mean a. 
 Another classical model consists of two terms: 

  tttt dWdtYSdS        (8) 

where Yt is a Brownian motion type process. 
 An alternative model is given by: 

)exp( ttt YXS        (9) 

where Xt is the Ornstein-Uhlenbech process describing short term variation and Yt is the Brownian 
motion describing long term dynamics. 

There are two completely opposite opinions regarding power consumption: the first one 
considers that is chaotic due to the influence of multiple factors (temperature, electricity price, 
network distribution operating conditions, economic environment, season, etc.) and another one that 
states that power consumption is random. 

We will work with the electricity spot price time series for one month, which we identified 
as exhibiting chaotic dynamics. 
 There are different approaches in analyzing the time series as univariate or multivariate [1]. 
The trading value of the electricity for each hour of the current day being set up in the previous one, 
the time series is seen by some researchers as multivariate. Other papers are working with 24 
distinct values per day and the time series is univariate. In our analysis we have considered the time 
series as univariate. 
 The electricity spot price time series has some specific features: 

1. Cyclical patterns represented by different types of seasonally behavior: annual seasonality 
(the price depends on the current season, in the cold season the price is higher), weekly 
season (the price depends on the day of the week) and daily (the price is different from hour 
to hour depending on the load).  

2.  Mean reverting. Referring to the short-time behavior, significant variations of the price can 
suddenly occur, and then the price is coming back to the values prior the increase. These 
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outliers can occur because storing large quantities of electricity is not possible, it has to be 
consumed when produced.  

3.  Another specific property of the electrical energy trading market is the fact that the price can 
be negative or zero, this happening mostly over night [3]. If there is an energy surplus, and 
the consumption low, the price is negative because uncoupling the generators or the nuclear 
plants would be very costly. The EEX German trading market was the first European market 
to allow negative prices. 

 
4. RESULTS 

 
 The time series was differentiated until the mean stationarity is obtained. Generally, we can 
use logarithmic values of the time series for variance stabilization. We have chosen to work with 
non logarithmic values  
 The outliers were not removed in order not to destroy the dynamics of the time series, even if 
these values are the result of the exceptional events or can be produced by errors. 
 Finding the values for p, d and q parameters implies the analysis of ACF (autocorrelation 
function) and PACF (partial autocorrelation function) plots. ACF measures the strength of the 
relationship between the current value yt and k previous values of the yt-k series for different k 
values. PACF measures the extent of which yt and yt-k are correlated, but after removing the 
intermediate values effect (correlation for k time step unexplained by lower order correlations). 

 
Figure no. 1. The spot price time series seasonally adjusted for trend removal. 

 

 
 a)       b) 

Figure no. 2. The plot of the ACF function for the spot price time series. a) before 
differentiation and b) after both simple and seasonal differentiation 
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 A seasonal differentiation was carried out because the ACF plot obtained after removing the 
trend shows peaks outside the significance range for intervals 24, 48, 72 etc, as can be observed in 
Figure no. 2. 
 The optimum adjusted model is SARIMA(1,0,5)(1,0,1)24 with AIC=6111.14. This index, the 
Akaike Information Criterion (AIC) is a relative measure of the quality of statistical models. The 
optimum model is the one with the lowest AIC. Table 1 presents the values of AIC index for 
different ARIMA models. 
 

Table no. 1. AIC index for different possible models.. 
 

Model AIC 
ARIMA(0,0,0) 6348.15 
ARIMA(0,0,0)(1,0,0) 6253.717 
ARIMA(0,0,0)(2,0,0) 6192.9 
ARIMA(0,0,1)(1,0,0) 6247.509 
ARIMA(0,0,3)(2,0,0) 6182.547 
ARIMA(0,0,4) 6337.326 
ARIMA(1,0,0)(1,0,0) 6247.276 
ARIMA(1,0,5)(2,0,0) 6188.617 

 
 The resulted model passes the Box – Ljung test. The null hypothesis (i.e. the model is not 
adequate) is rejected because the value of the parameter p (the level of uncorrelated residuals) is 
0.7204, greater than 0.05 (the reference value). We can say that the results are not correlated 
(uncorrelated with no other predictor), as one can observe from the plot of ACF and PACF for the 
residuals time series. All the value are in the significance range. 
 

 
Figure no. 3. Autocorrelation and partial autocorrelation functions for the residuals of 

SARIMA model. 
 
The result of time series modeled with optimal SARIMA model is presented in Figure no. 4. 
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Figure no. 4. ARIMA modeled time series (blue) vs. original time series. 

 

 
Figure no. 5. Learning results for the ARIMA residuals. 

  
 The mean squared error obtained as a result of model fitting is 0.00050813. The neural 
network with 2-24-1 architecture applied on the learning set leads to an error of 0.003. 
 

5. CONCLUSIONS 
 
 Time series representing the evolution in time of a variable produced by a nonlinear system 
are difficult to predict. If the time series exhibits chaotic dynamics, the analysis and modeling is 
even more difficult. The paper present the results obtained in modeling of a time series 
corresponding to the electricity spot price values collected for one month. The nonlinear part of the 
time series was modeled using the ARIMA technique and the nonlinear part which is formed by the 
residuals from the ARIMA model, was modeled by a multilayer perceptron neural network. The 
results are proving that hybrid techniques are able to provide better models than each procedure 
separately. 
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