The Annals of The "Stefan cel Mare" University of Suceava. Fascicle of The Faculty of Economics and Public Administration Vol. 10, No. 1(11), 2010

DEVELOPING WEB APPLICATIONS USING THE MDA PARADIGM

Lecturer Ph.DMihai-Constantin AVORNICULUI
“Babes—Bolyai”University Cluj-Napoca, Romania
mihai.avornicului@econ.ubbcluj.ro

Abstract:

Data intensive web based systems, that in the afdkeir uptime do data processes have become tagbar
our everyday life. Several systems of this typeaygul on the internet: webshops, online ticket shbanks, etc. These
are used everyday by users around the worls. Theotimodel drive approach brings several advantabasease up
the development process. Working prototypes thapldy client relationship and serve as the basenotlel tests can
be easily made from models describing the systémeselrsystems make possible for the banks cliemtske their
desired actions from anywhere. The user has thsilpitity of accessing information or making transans.

Keywords: Web application, MDA, MVC, Banking services

JEL Classification: C 88

INTRODUCTION

In recent years Web applications have become agbastir everydays. On Internet have
appeared many applications like these.

Modeling such a system is a very complex task, ise#o be able to develop a felxible and
upgradeble system we have to take in account tiserexand the future technologies too.

The model-driven approximation has many advantayesn when is used to create Web
applications, because we can quickly generate &imgprototype from the models which describe
the plan, and on the basis of these models we ede model-revisions.

In a short time this paradigm has become very @opard so is involved in many areas of
life bringing a new line of sight in applicationwddopment too.

Because of the Web applications’ diversity it isdm@ing more and more difficult to choose
the required technologies and platforms.

It is possible that at the end of the developmaftgr installation, the application outgrow
the proposed framework. The problem in this cagéas maybe we have to change the platform
and this may mean that the whole application masebmplemented.

In better case changing the platform can be easihieved, but the used technics may
become out-of-date and so they will not be compatiith new technologies. This fact may imply
several problems, for example after a while theitsmh’s support will leave off. On the other hand
new developers may get into the team, who don’wktize older technics and so the improvemnet
will be more difficult.

Practice shows that the application’s logic shdwddformed irrespectively of technological
details.Even if we use traditional application depenent methods, it is familiar that after the
model was finished and once implemented, in the seps will not be used but simply set aside.
So, between the model and the code it can’t beldesd a relationship, so the change within the
model doesn’t appear into the code and vice vadsaause of this the model will be unable to
perform his original function, to provide deterntina informations about the system.

THE MVC ARCHITECTURE

To eliminate the aforementioned problems, during ttesign process we must place
particular emphasis on the separation of the corated the visualization, thus we can reuse these
components.

During the development of a Web-based applicati@nnost frequently used design pattern
is the Modell-View-Controller. This one efficientipcreases the application’s usability and helps
us to understand the accurate operation of theranag

187

The Annals of The "Stefan cel Mare" University of Suceava. Fascicle of The Faculty of Economics and Public Administration Vol. 10, No. 1(11), 2010

This pattern is simple and efficient and the resgltode is reusable.

Input HTTP| . Cal -
(Web Browser) request | <controller » Model
Forward Result
Result
HTTP .
< View
(Web Browser) responk e

Figure 1. The MVC architecture

On server side the Controller receives the requéstaiards them to the model which
executes the requested task.
According to user commands respectively to the Medesult, it is practical to let the
Controller choose the fitting View.
Using the MVC we have the following benefits (Adardnd Kollar, 2008):
* Modularity : allows to replace either component
* Reusability: we can reuse the already existing code
» Easy expandability. the Controller and the View can be expanded aloitg the
Model
» Centralized controller: with the help of the Controller the manageabiligcomes
easier
In case of Web applications we can’t only lean ovi@/design patterns, because we may
forget the apllication’s several other features. #sesult the application may be difficult to
develop and to maintain. Practice has confirmedt MVC patterns can successfully used for
developing web applications combined with otherl\webwn tools.

THE MODEL-DRIVEN ARCHITECTURE

The Model-driven architecture (MDA) is a new apation development approximation
which in recent years has become a paradigm to® ndst important assumption of this paradigm
(Schmidt, 2006) is that the designing and the dagmknt in fact mean creating models with
different level of abstraction.

An MDA specification is composed of a platform ipeéadent (PIM) model and one or
more platform specific models (PSM).

According to MDA paradigm, first of all will be fished the examined system’s
computational independet model (CIM) which illusésathe business logic without reference to the
machine.

During the design of Web applications, after fimighthe CIM we need to create the models
below (Valverde, 2007; Adamko and Kollar, 2008):

» Structural model: which describes the objects of speciality concapd the
structural relations between them
* Navigational model which presents the Web application’s reticulaggdcture

188

The Annals of The "Stefan cel Mare" University of Suceava. Fascicle of The Faculty of Economics and Public Administration Vol. 10, No. 1(11), 2010

» Component model wherein is written those classes’ organizatioto ibigger
logical units, which represent the functionally esive concepts
» Presentational model which is an abtsractionf the user interface and it is in
elementary relation with diplayed components
In fact a PIM is a full specification which is platm independent. A PIM model must be
transformed to a PSM model which insures the itfuasure of system architecture. This
transformation means the implementation of PIM,the executable application’s generation.
The PIM allows the solution’s visual modeling ohigher level of abstraction. Thus when a
new technology appears isn’t necesary to rewrieagbplication, we only have to regenerate it.
The figure 2. demonstrates the concept of the MDA:

Ideal MDA tool
CIM
iy <«— Transformation
Conceptual PI_M
level Automated
S Conversion
PSM
M .
Reverse @ <«— Code generation

Source code

Figure 2. The concept of the MDA

The most difficult is to convert the PIM model t&® model, because several tools don't
completely support the conversion (Avornicului, QP1

THE DEVELOPMENT PROCESS

As in case of any other application the first sgefhe requirements’ analyses.

With the help of Use Case diagrams as well as Agtitiagrams we define the basic
functionalities of the system. The differing rolesthe application’s users are represented by the
actorswhile their activities are represented by tise case

The second step is the conceptual modeling of pgpdication’s data structure and access
paths.

After the platform is finished using an independsidel, we make the platform-specific
model by the help of a model transformation. Thie can be used to generate code.

THE DESIGN STEPS

The planning process is composed of several compleskflows. In case of a Web
application the analyses and the design are cldisélyd activities.
During the stpes of design, analyses and requirededmition we have to make the models
below:
* Use case models
» Conceptual model

189

The Annals of The "Stefan cel Mare" University of Suceava. Fascicle of The Faculty of Economics and Public Administration Vol. 10, No. 1(11), 2010

* Navigation model
* Component model
* Presentation model

In the course of an iterative process these moadisncreasingly include the speciality
requirements. The analyses of requirement will bevd up under the form of use cases. Our
conceptual model will be trained from these, antil gwe the relationships which are determinant
from the viwepoint of the specilaity. This can bewed like a platform independent model. From
this one will be derived the navigation model ahd tomponent model, and we will not yet take
into consideration the technology and the implermimh’s aspects.

The purpose of the representation model is taaagl the component model’s elements to
other ones which bind to different well known geatiuser interfaces. The platform-specific model
will be derived from these. In the following we pest a case study in which we follow the stages
of designing the mentioned application.

CASE STUDY: ONLINE BANKING SERVICES

Using the application the clients have the poggjbib open charge accounts, to pay in
money, to transfer money to another account whithen bank, as well as to abolish their own
account. One client can open only one account beitaecount may be owned by more people.

Our first step is the requirement’s analyses. T&ithat step during wich we define what
kind of application we have to make. If we made &bWapplication, we may have several
problems:

* A Web application may have one or more entry points
* The resources and the technologies change too fast
* There is no well developed systematic guide-line

The use cases help us to explore the system reggmts. In our case the use case diagram
may be like this one below:

Charge account abolition
Charge account opening

4/ <<include>>
Charge account operation
. <<include>>

Account control Account holder control
<<include>>

7 v\\ %

= = <<include>>

Figure . The user’s function:

Usualy the requirements are summarized by not@mypeople because this is a complex task.
Making the conceptual model will be the second .steghis phase the goal is to make a
model which include the relevant conceptions towheb application.

Money deposi

it
" <<include>>

190

The Annals of The "Stefan cel Mare" University of Suceava. Fascicle of The Faculty of Economics and Public Administration Vol. 10, No. 1(11), 2010

During this phase we define the classes, the impodttributes and methods. To make the
speciality’s structural model we usualy use classespackages. Pu———

WebForm
___‘> <} +NewAccount(): bool
+Transfer(): bool
+PayIn(): bool

+showDialog(): DialogResult
+AccountAbolition()

NewAccountForm
-getAccountNumber()
+BtnNewClient_Click() —frmNewAccount
+getAccount()
+getOwner()
-Account
Person ChargeAccount
NewClientForm + stri
-Nam.e' string -AccountNumber: string
- -CNP: longInt -Balance: real
+getAdress(): string -Adress: string -Owners: string[10]
+getName(): string frmNewOwner | ~Tel: longInt +Owner -Account
+getIdentityNr(): string -email: string +ChargeAccount()
-Account: string 1.% +getAccountNumber()
+getBalance()
+Person() +getOwners()
+getName() +PayIn()
+getHomeAdress() +CoverReview()
+getAccount()

Figure 4. Structural model

The third step is designing the navigation, whishai crucial step in making a web
application. In this step we produce the applicgdsicgtructure and the designers have an inportant
role, because they have to decide which classéde&viised and what sort of navigation paths will
set up. These will be set up according to requirgméxed in the conceptual model as well as in
use cases. The next figure demonstrates the nangditagram in case of our system:

<<Navigation Class>>

— AdministratorForm
<<Navigation Class>>
WebForm
> <} +NewAccount(): bool
- - +Transfer(): bool
+showDialog(): DialogResult +PayIn(): bool
+AccountAbolition()

<<Navigation Class>>
NewAccountForm
-getAccountNumber ()
+BtnNewClient_Click() | -frmNewAccount
+getAccount()
+getOwner() -Account
<<Navigation Class>> <<Navigation Class>>
<<Navigation Class>> Person ChargeAccount
NewClientForm -Name: string -AccountNumber: string
+getAdress(): strin -CEP: L “Balance: real
+getName 0 stringg _frmNewOwner -#elr:elzi.gﬁ:ng +Owner -Account | -Owners: string[10]
+getIdentityNr(): string -email: string 1% +ChargeAccount()
-Account: string v +getAccountNumber()
+getBalance()
+Person() +getOwners()
+getName() +PayIn()
+getHomeAdress() +CoverReview()
+getAccount()

Figure 5. Navigation diagram

191

The Annals of The "Stefan cel Mare" University of Suceava. Fascicle of The Faculty of Economics and Public Administration Vol. 10, No. 1(11), 2010

As shown in figure 5, in order to reflect upon tievigability within the application, class
diagram was used in which classes and relationsise@. Relations express navigability within the
application.

During the previous steps we have made the mostaabsnodel of our application. The
next step is creating the component model. The oowapts can be used in all that places where the
classes appear.

The figure below contains that classes which gtabcount module:

Composite Structure Accounts E

<<Navigation Class>>
WebForm

<<index>> O
AccountIndex|

ccount

o

I_Accountindex

1S

+showDialog(): DialogResu

<<Navigation Class>>
AdministratorForm

+NewAccount(): b
+Transfer(): b
. +PayIn(): b
<<Navigation Class>> / L [lj
NewAccountForm iaccoy liion()

-getAccountNumber()
+BtnNewClient_Click()
+getAccount()
+getOwner()

<<Navigation Class>>
NewClientForm

+getName(): string
+getIdentityNr(): strin

+getAdress(): string
QI]:E

Figure 6. The account’'s components

One component may appear in several roles witlarctinceptual model.

The next step is creating the presentation modsingJa PIM-PSM transformation we
replicate the components to a given platform. s thodel new structures are not introduced, but
ole components are reorganized.

In UML components are universal. Components camdassl only in places where classes
exist. Following the MDA paradigm we can use nurogrtransformations to achieve a PIM-PSM
transformation.

According to the component, navigation and pres@mtamodels we derive XForm-type
pages. The XForm is a dynamic and scripting languadependent system which is integrated in
another language (Valverde, 2007).

The advantages of XForm (Valverde, 2007; Adamka kmithr, 2008):

* Developing the MUC model

* Is a decorative language

* Is compatible with XML standards
* Is extensible

Its only disadvantage is that isn’t spread enoogbet natively implemented in browsers.

By the help of XForms we can make forms that alldthes client to easily create XML
documents, by filling and sending these formshis way the data input is easy to realize.

192

The Annals of The "Stefan cel Mare" University of Suceava. Fascicle of The Faculty of Economics and Public Administration Vol. 10, No. 1(11), 2010

CONCLUSIONS

The model-driven application development brings fuodution’s specification closer to
formulate the problem. The MDA paradigm is ableorganize and develop data-oriented Web
applications.

In case of a Web application the individual develept phases are complex and not always
systematic. The described steps in this article ¢ten applyed efficiently to develop a
comprehensive Web-based system.

REFERENCES

1.

© ©

Adamko A., Araté M., Fazekas G., Juhasz |. (2008rformance Evaluation of Large-
Scale Data Processing Systems' Proc. of thénfernational Conference on Applied
Informatics

Adamko A., Kollar L.(2008) 'MDA-based developmeritdata drive Web applications'
Proc. of the # International Conference on Web Information SystemgsTeechnologies
Avornicului C., Avornicului M. (2006)'Aspects of using MDA paradigm in sistem
development’Proceeding of International Conference on Businegsmation Systems
lasi

Avornicului C., Avornicului M. (2010) 'Managementuyi proiectarea sistemelor
informatice de gestiun&ditura Risoprint Cluj-Napoca

Hazra T. K.(2002) 'MDA brings standards-based dgpiag Modeling to EAlI Teams',
Application Development Trendsglay

Kennedy A. (2004) 'Model Driven Architecture andeEntable UML — The Next
Evalutiopnaryx Steps in System Developmen8zgftvertechnolégiai ForunBudapest
Raffai M. (2005) 'Az UML 2 modelléz nyelv' Szakkonyv Kiadas alatPalatia Kiadg
Gyor

Schimdt D. C. (2006) 'Model-Driven EngineeringEEE Computer39(2)

Valverde, F., et al. (2007) 'A MDA-Based Environmefor Web Applications
Development: From Conceptual Models to Code*irernational Workshop on Web-
Oriented Software Technologi@Rending Publication)

10.www.omg.org/docs/formal/03-03-01.pdf

193

