
The Annals of The "Ştefan cel Mare" University Suceava. Fascicle of The Faculty of Economics and Public Administration Volume 9, No.1(9), 2009

IMPLEMENTATION METHOD "DIVIDE AND IMPERA" USING OBJECT -ORIENTED
PROGRAMMING IN C #

PhD. Student engineer Cătălin LUPU
Ministry of Administration and Interior, Suceava, Romania

lupucata@yahoo.com
Assoc. Prof. PhD.Valeriu LUPU

„Stefan cel Mare” University, Suceava, Romania
valeriul@seap.usv.ro

Professor of Informatics Petru ARCAN
National College of Commerce , Chisinau, Moldova

arptr_us@yahoo.com

Abstract:
In this article presents applications of “Divide et impera” method using object -oriented programming in C #.

Main advantage of using the "divide et impera" cost in that it allows software to reduce the complexity of the problem,
sub-problems that were being decomposed and simpler data sharing in smaller groups of data (eg sub -algorithm
QuickSort). Object-oriented programming means programs with new types that integrates both data and methods
associated with the creation, processing and destruction of such data. To gain advantages through abstraction
programming (the program is no longer a succession of processing, but a set of objects to life, have different
properties, are capable of specific action s and interact in the program). Spoke on instantiation new techniques,
derivation and polimorfismul object types.

Keywords: Divide et impera, constructor, destructor, class, member, court

JEL Classification: C61

1. INTRODUCTION TO THE FIELD - THE PRESENTATION METHOD "DIVIDE
AND IMPERA"

The method of programming Divide and IMPERA problem lies in dividing the initial size
[n] into two or more smaller. In general, is running sub -problems dividing into two approximately
equal size, namely [n / 2]. Are Sub -problems sharing in place until their size is sufficiently small to
be resolved either directly (if basic). After solving the two runs sub -problems phase of combining
the results to solve the whole problem.

Divide and IMPERA method can be applied to solve a problem that meets the following
conditions:

 can decompose in (two or more) sub -problems;
 these sub-problems are an independent against another (no sub -problem a resolve on the

other and does not use the other);
 these sub-problems these are similar to the initial problem;
 sub-problems in turn can decompose (if necessary) in other sub -problem simpler;
 these simple sub-problem can immediately solve the simplified algorithm.
Because few problems meeting the conditions above, the application of the method is quite

rare.
As the name suggests "separating and rule" steps to resolve a problem (called the initial

problem) in Divide and IMPERA are:
 decomposition problem initial sub -problems independent, similar to the basic problem,

smaller;
 gradual decomposition of sub-problems other sub-problem increasingly simple, until

you can resolve this through simplified algorithm;
 solving sub-problems simple;
 combination of solutions found for building solutions sub -problems sizes increasingly

large;

lupucata@yahoo.com
valeriul@seap.usv.ro
arptr_us@yahoo.com

The Annals of The "Ştefan cel Mare" University Suceava. Fascicle of The Faculty of Economics and Public Administration Volume 9, No.1(9), 2009

 combining the latest solutions getting determine the initial problem solution.
Method Divide and IMPERA recurring implementation, because sub -problems initial
problem are similar, but smaller.

The basic principle of recursivity is a recall sub -programs when it is active, what happens at
a level happens at every level, taking care to ensure the condition of termination of repeated calls.
Similar happens in the case method divide and Imperia, to a certain level are two possibilities:

 it was a (sub) problem which allo w a simple solution immediately, in which case is
resolved (sub) problem and return the call (to subproblema earlier, the larger);

 it was a (sub) which does not allow for an immediate solution, in which case the
decomposition in two or more subprobleme a nd each of them continues recursive calls (of
the procedure or function).

In the final stage of the method and divide Imperia is produced combining subproblemelor
(already resolved) by sequences of return calls from recurring. Stages method divide and Imp eria
(shown above) can be represented by the following general subprogramme (procedure or function)
recurring expressed in natural language:

Subprogramme divimp (probably);

 If the problem is simple prob
 Then resolve to obtain and soil solution
 Otherwise i = 1, k running DIVIMP (probably) and get ground 1;
 Combine ground solutions 1, ... , Soil K and gain ground;

end_sub-program;

So subprogram divimp is calling for the initial test session, to allow the decomposition k
subprobleme simple, for they redials recurring subprogram; finally combine these solutions k
subprobleme.

Usually, the initial problem fester in the second subprobleme simple, in this case stages
general method of divide and Imperia may be, the pseudo -code language, by a recursive procedure
as follows:

The procedure divimp (li, ls, soil);
 If ((ls-li) <= eps)
 Then REZOLVATE (li, ls, soil);
else

 divide (li, m, ls);
divimp (li, msol1);

 divimp (m, ls, sol2);
combine (sol1, sol2, soil);

End_procedure;

Divimp procedure is called for the initial size of which is the lower limit (li) and the lower
limit (ls), if (as) the problem is simple (ls -li <= eps), then the procedure is the solution solves them
immediately and return occurs recursive call, if (as) the problem is (still) complex, then divide a
procedure divided into two sub-problems, choosing between the position I have and ls, for each of
the two sub-problems it redials recurring procedure divimp; finally returns Call of producing a
combination of the two solutions sol1 and sol2 by combining the procedure call.

The Annals of The "Ştefan cel Mare" University Suceava. Fascicle of The Faculty of Economics and Public Administration Volume 9, No.1(9), 2009

TOWERS OF HANOI PROBLEM

PRESENTATION SOLVING ALGORITHM

Whether three vertical sticks marked A, B, C. On A rod can be found seated in different
diameter discs, in ascending order of Diameter on the top down. Initially, rods B and C are empty.
To show all the movements that discs on the rod to move the rod B, in the same order, using as a
rod for maneuver C and within the following rules:
- Every step to move a single disc;
- A disc can only settle over a disc with a diameter greater.
Resolving this problem is based on the following considerations logical:
- If n = 1, then move it immediately A ->B (move on the disc A B);
- Where n = 2, then the string of moves is: A->C, A->B, C->B;
- If n> 2 proceed as follows:
- Dumb (n-1) A->C discs;
- Move a disc A->B;
- Move the (n-1) discs C->B.

We see that the initial problem fester into three sub -problems simpler similar problem of a
dumb (n-1) A->C discs, the latest move disc B, move the (n -1) discs C -> B. Sub-problems these
dimensions are: n-1, 1, n-1.

These sub-problems are independent, as originally rods (which are disks), rods and final
intermediate rods are different. Note H (n, A, B, C) = string of move s discs from an A to B, using
C.

for
 n = 1, A->B
 n> 1, h (n, a, b, c) = h (n-1, a, c, b), ab, h (n-1, c, b, a)

end_for

Visual Basic version C# version

Sub Button20_Click()

Dim n As Integer, a As sir, b As sir, c As sir

d = ""

a.s = "A"

b.s = "B"

c.s = "C"

n = InputBox("n=", ib_title)

hanoi n, a, b, c

MsgBox d

End Sub

Sub hanoi(n As Integer, a As sir, b As sir, c
As sir)

If n = 1 Then

d = d + "(" + a.s + "->" + b.s + "),"

Else

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication1

{

 class var_globale

 {

 public int n;

 public string sir;

 public int[] vector;

 }

 class Program

The Annals of The "Ştefan cel Mare" University Suceava. Fascicle of The Faculty of Economics and Public Administration Volume 9, No.1(9), 2009

hanoi n - 1, a, c, b

d = d + "(" + a.s + "->" + b.s + "),"

hanoi n - 1, c, b, a

End If

End Sub

 {

 static void cit_n(string mes, ref int
x)

 {

 do

 {

 Console.WriteLine(mes);

 x = int.Parse(Console.ReadLine());

 } while (x < 0 || x > 100);

 }

 static void hanoi(int n, char a, char
b, char c)

 {

 if (n == 1)

 Console.WriteLine(" {0} {1}
", a, b);

 else

 {

 hanoi(n - 1, a, c, b);

 Console.WriteLine(" {0} {1}
", a, b);

 hanoi(n - 1, c, b, a);

 }

 }

 static void Main(string[] args)

 {

var_globale v_g = new var_globale();

cit_n("N = ", ref v_g.n);

char a, b, c;

a = 'a';

b = 'b';

The Annals of The "Ştefan cel Mare" University Suceava. Fascicle of The Faculty of Economics and Public Administration Volume 9, No.1(9), 2009

c = 'c';

hanoi(v_g.n, a, b, c);

Console.ReadLine();

 }

 }

}

Sort QUICK (QUICKSORT)

In a painting is completed by elements in real numbers. To ascending order using the
method of sorting fast. The problem is based on the following steps implemented in the pr imary:

 procedure is called "quick" with the lower limit were = 1 and the upper limit ls = n;
 the "poz" done in moving the item [s] on exactly what position it will occupy in the

final vector ordered, the "poz" return (in k) position of this item;
 in this way, vector V is divided into two parts: li ... k-1 and k 1 ... ls;
 for each of these parties redials the procedure is "quick", with the modified

accordingly;
 in this way, the first element in each part will be positioned exactly the position that a

final deal will finally ordered the vector (the "poz");
 each of the two parties will thus divided into two parts, the process continues until the

parties come to overlap, indicating that all elements of the vector have been moved on
exactly what positions they occupy in the final vector; vector is so ordered;

 at this time to produce your recursive calls and the implementation of its ends.
Remarks:
- If the item is left, then compared with elements of the right and jump (j: = j -1) elements

of greater than him;
- If the item is right, then compared with elements of the left and jump (i: = i +1)
elements smaller than him.

Visual Basic version C# version

Sub Button18_Click()

Dim n As Integer, a As vector

cit_n "n = ", n

cit_date "a", n, a

'MsgBox "Sirul a este"

tipar "Sirul a este", n, a

divimp 1, n, a

'MsgBox "Sirul a sortat este"

tipar "Sirul a sortat este", n, a

End Sub

Sub cit_n(mes As String, n As Integer)

Do

n = InputBox(mes, y)

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication1

{

 public interface sortt

 {

 int n

 {

 get;

 set;

 }

The Annals of The "Ştefan cel Mare" University Suceava. Fascicle of The Faculty of Economics and Public Administration Volume 9, No.1(9), 2009

Loop Until n > 0 And n < 100

End Sub

Sub cit_date(mes As String, n As Integer, a As
vector)

For i = 1 To n

a.v(i) = InputBox(mes + "(" + Str$(i) + ")=", y)

Next

End Sub

Sub tipar(mes As String, n As Integer, a As
vector)

sir = ""

For i = 1 To n

sir = sir + Str$(a.v(i)) + ","

Next

MsgBox mes + " " + sir

End Sub

Sub sort(p As Integer, q As Integer, a As vector)

Dim m As Integer

If a.v(p) > a.v(q) Then

m = a.v(p)

a.v(p) = a.v(q)

a.v(q) = m

End If

End Sub

Sub divimp(p As Integer, q As Integer, a As
vector)

Dim m As Integer

If (q - p) <= 1 Then

sort p, q, a

Else

m = Int((p + q) / 2)

divimp p, m, a

divimp m + 1, q, a

interc p, q, m, a

End If

End Sub

Sub divimp(p As Integer, q As Integer, a As
vector)

 int[] a

 {

 get;

 set;

 }

 string sir

 {

 get;

 set;

 }

 }

 public class sortta : sortt

 {

 private int _n;

 private int[] _a;

 private string _sir;

 public void cit_n()

 {

 do

 {

 Console.WriteLine("N = ");

 _n = int.Parse(Console.ReadLine());

 } while (_n < 0 || _n > 100);

 }

 public void cit_date()

 {

 _a = new int[_n+1];

 for (int i = 1; i <= _n; i++)

 {

 Console.WriteLine("a[{0}]= ", i);

 _a[i] = int.Parse(Console.ReadLine());

 }

 }

 public void tip_date()

 {

 Console.WriteLine(_sir);

 // aa = new int[n];

The Annals of The "Ştefan cel Mare" University Suceava. Fascicle of The Faculty of Economics and Public Administration Volume 9, No.1(9), 2009

Dim m As Integer

If (q - p) <= 1 Then

sort p, q, a

Else

m = Int((p + q) / 2)

divimp p, m, a

divimp m + 1, q, a

interc p, q, m, a

End If

End Sub

 for (int i = 1; i <= _n; i++)

 {

 Console.WriteLine("a[{0}]= {1}, ", i,
_a[i]);

 // aa[i] =
int.Parse(Console.ReadLine());

 }

 }

 public void sortare()

 {

 int i, k, x;

 do

 {

 k = 0;

 for (i = 1; i <= _n - 1; i++)

 if (_a[i] > _a[i + 1])

 {

 x = _a[i];

 _a[i] = _a[i + 1];

 _a[i + 1] = x;

 k = 1;

 }

 } while (k == 1);

 }

 public void insertie_directa()

 {

 int i,j,r;

 for(i=2;i<=_n;i++)

 {

 _a[0]=_a[i];

 j=i-1;

 r = 1;

 while ((_a[j]>_a[0])&&(r==1))

 {

 _a[j+1]=_a[j];

 j=j-1;

 if (j <= 0)

 {

 r = 0;

 }

The Annals of The "Ştefan cel Mare" University Suceava. Fascicle of The Faculty of Economics and Public Administration Volume 9, No.1(9), 2009

 }

 _a[j+1]=_a[0];

 }

 }

 public void insertie_binara()

 {

 int i, j, s, d, m, x;

 // _a = new int[100];

 for (i = 2; i <= _n; i++)

 {

 x = _a[i];

 s = 1;

 d = i - 1;

 while (s <= d)

 {

 m = (int)((s + d) / 2);

 if (_a[m] > x)

 d = m - 1;

 else

 s = m + 1;

 }

 for (j = i - 1; j >= s; j--)

 a[j + 1] = a[j];

 a[s] = x;

 }

 }

 public void selectie()

 {

 int i, j, k,x;

 for (i = 1; i <= n - 1; i++)

 {

 k = i;

 x = _a[i];

 for (j = i + 1; j <= _n; j++)

 if (_a[j] < x)

 {

 x = _a[j];

 k = j;

 }

 _a[k] = _a[i];

 _a[i] = x;

The Annals of The "Ştefan cel Mare" University Suceava. Fascicle of The Faculty of Economics and Public Administration Volume 9, No.1(9), 2009

 }

 }

 public void selectie_performanta()

 {

 int i, j,min, x;

 for (i = 1; i <= n - 1; i++)

 {

 min = i;

 for (j = i + 1; j <= _n; j++)

 if (_a[j] < _a[min])

 {

 min = j;

 }

 x=_a[min];

 _a[min] = _a[i];

 _a[i] = x;

 }

 }

 public void sortarea_prin_ame stecare()

 {

 int j,k,l,r, x;

 l = 2;

 r = _n;

 k = _n;

 do

 {

 for (j = r; j>=1; j--)

 if (_a[j-1] > _a[j])

 {

 x = _a[j-1];

 _a[j-1] = _a[j];

 _a[j] = x;

 k=j;

 }

 l=k+1;

 for(j=1;j<=r;j++)

 if (_a[j-1] > _a[j])

 {

 x = _a[j-1];

The Annals of The "Ştefan cel Mare" University Suceava. Fascicle of The Faculty of Economics and Public Administration Volume 9, No.1(9), 2009

 _a[j-1] = _a[j];

 _a[j] = x;

 k=j;

 }

 r=k-1;

 } while(!(l>r));

 }

 public void shellsort()

 {

 int i, j, k, s, x, b;

 k = _n;

 do

 {

 k = k / 2;

 do

 {

 b = 1;

 for (i = 1; i <= _n - k; i++)

 if (_a[i] > _a[i + k])

 {

 x = _a[i];

 _a[i] = _a[i + k];

 _a[i + k] = x;

 b = 0;

 }

 } while (b == 0);

 } while (k != 1);

 }

 public void quicksort_recursiv()

 {

 int m;

 m = 1;

 sortare(m, _n);

 }

 public void sortare(int s, int d)

 {

 int i, j, x, w;

 i = s;

 j = d;

 x = _a[(s + d) / 2];

 do

The Annals of The "Ştefan cel Mare" University Suceava. Fascicle of The Faculty of Economics and Public Administration Volume 9, No.1(9), 2009

 {

 while (_a[i] < x)

 i = i + 1;

 while (_a[j] > x)

 j = j - 1;

 if (i <= j)

 {

 w = _a[i];

 _a[i] = _a[j];

 _a[j] = w;

 i = i + 1;

 j = j - 1;

 }

 } while ((i <= j));

 if (s<j)

 sortare(s, j);

 if (i < d)

 sortare(i, d);

 }

 public int n

 {

 get

 {

 return _n;

 }

 set

 {

 _n = value;

 }

 }

 public string sir

 {

 get

 {

 return _sir;

 }

 set

 {

 _sir = value;

The Annals of The "Ştefan cel Mare" University Suceava. Fascicle of The Faculty of Economics and Public Administration Volume 9, No.1(9), 2009

 }

 }

 public int[] a

 {

 get

 {

 return _a;

 }

 set

 {

 _a = value;

 }

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 sortta SORTTA = new sortta();

 SORTTA.cit_n();

 Console.WriteLine("N = {0}",
SORTTA.n);

 SORTTA.a = new int[100];

 SORTTA.sir = "Vectorul initial este : ";

 SORTTA.cit_date();

 SORTTA.tip_date();

// SORTTA.sortare();

 //SORTTA.insertie_directa();

 //SORTTA.insertie_binara();

 //SORTTA.selectie();

// SORTTA.selectie_performanta();

 //SORTTA.sortarea_prin_amestecare();

 //SORTTA.shellsort();

 //SORTTA.heapsort();

 SORTTA.quicksort_recursiv();

 SORTTA.sir="Vectorul sortat este : ";

 SORTTA.tip_date();

 Console.ReadLine();

 }

The Annals of The "Ştefan cel Mare" University Suceava. Fascicle of The Faculty of Economics and Public Administration Volume 9, No.1(9), 2009

 }

}

CONCLUSIONS

This article presents the advantages of “divide et impera” method and o bject-oriented
programming. One of the major advantages of object oriented programming is the ability to reuse
existing code. Can design new classes using already constructed class is called inheritance. If a
class A inherits class B, then B and class meth ods will be considered as belonging to class A.
Heritage and create a class "base" in order to store the common characteristics of different classes,
such properties will not be specified in each class separately. Main advantages of using object
oriented programming are:

 ease of design and code reuse:
Once tested the correctness of the operation objects of an application, they can be used without any
problem in another application. This advantage can be exploited by the formation of libraries of
objects. Regarding design, it facilitates the decomposition of complex problems in simple sub -
problems, which can be easily modeled using objects (variables will describe properties of objects
shaped their actions and methods).

 abstraction:
Designers can obtain an overall view to the behavior of objects and interactions between them, the
details are buried in the composition of objects.

 safety data:
Able objects to behave like "black boxes", it can be used without the knowledge of their
composition, providing privacy and decreases the frequency used appearances and the errors related
to wrong handling of types of data.

REFERENCES

1. Dorel Lucanu - Bazele proiectării programelor şi algoritmilor II: Tehnici de programare -
Editura Universităţii "Al. I. Cuza" , Iaş i, 1996

2. Cristian Masalagiu, Ioan Maxim, Ioan Asiminoaei - Metodica predării informaticii - Editura
Matrix Rom, Bucureşti, 2001

3. Tudor Sorin - Tehnici de programare - Editura L&S Infomat, Bucureşti, 1994
4. Tudor Sorin - Tehnici de programare - Editura Teora, Bucureşti, 1994
5. Lucian Sasu - Visual C#,2005
6. Valentin Cristea - Tehnici de programare - Editura Teora, Bucureşti, 1993
7. Ioan Odăgescu - Metode şi tehnici de programare - Editura Intact, Bucureşti, 1994
8. Ioan Odăgescu - Olimpiadele naţionale şi internaţional e de informatică - Editura L&S

Infomat, Bucureşti, 1996
9. Mihai Oltean - Culegere de probleme - Editura Libris, Cluj, 1997
10. Mihai Mocanu - 333 probleme de programare - Editura Teora, Bucureşti, 1993
11. Diana Gruiţă - Culegere de probleme - Editura Libris Agora, Cluj, 1998
12. **** Programarea Orientata pe Obiecte si Programarea Vizuala cu C# .Net – documentatie

